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We study phase separation in thin films using a model based on the Navier-Stokes Cahn-Hilliard equations
in the lubrication approximation, with a van der Waals potential to account for substrate-film interactions. We
solve the resulting thin-film equations numerically and compare to experimental data. The model captures the
qualitative features of real phase-separating fluids, in particular, how concentration gradients produce film
thinning and surface roughening. The ultimate outcome of the phase separation depends strongly on the
dynamical back reaction of concentration gradients on the flow, an effect we demonstrate by applying a shear
stress at the film’s surface. When the back reaction is small, the phase domain boundaries align with the
direction of the imposed stress, while for larger back-reaction strengths, the domains align in the perpendicular
direction.
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When a binary fluid is cooled below the critical tempera-
ture, the mixed state is energetically unfavorable and the
system spontaneously phase separates and forms domains
rich in either fluid component �1,2�. Due to the relevance of
phase-separating thin films in industrial applications �3�,
many experiments and numerical simulations focus on un-
derstanding how phase separation is altered if the binary
fluid forms a thin layer on a substrate. To explain the main
features of these studies, we propose a lubrication approxi-
mation of the coupled Navier-Stokes Cahn-Hilliard equations
for a thin layer of fluid with a free surface.

Several recent experiments have clarified the different re-
gimes of domain growth in a binary thin film. Wang and
Composto �4� have identified early, intermediate, and late
stages of evolution. The early stage comprises three-
dimensional domain growth, while the intermediate stage is
characterized by the formation of wetting layers at the film
boundaries, the thinning of the middle layer, and significant
surface roughening. Due to the thinning of the middle layer,
the sandwichlike structure breaks up, and matter from the
wetting layer flows back into the bulk. Thus, a late stage is
reached, consisting of bubbles coated by thin wetting layers.
This characterization of the evolution has been seen in other
experiments �5,6�, although clearly a variety of behaviors is
possible, depending on the wetting properties of the mixture.
Our model captures the essential features of this evolution, in
particular the tendency for concentration gradients to pro-
mote film rupture and surface roughening.

In a series of papers, Das et al. �7,8� numerically investi-
gate the behavior of binary fluids with wetting. In �7� they
study the wetting properties of a binary mixture in an ultra-
thin film. The behavior is different from that in bulk mix-
tures. In bulk mixtures, where one component of the binary
fluid is preferentially attracted to the boundary, a layer rich in
this component is established at the boundary, followed by a
depletion layer. This layered structure propagates into the
bulk and is called a spinodal wave �8�. In ultrathin films,

where the film thickness is less than a spinodal wavelength,
this layered structure is suppressed. Two types of behavior
are then possible. In the partially wet case, both fluid com-
ponents come into contact with the film boundaries. The ul-
timate state of the system is a domainlike structure extending
in the lateral directions. The domains grow in time as t1/3,
indicating Lifshitz-Slyozov diffusion �9�. In the other case,
complete wetting, only one of the fluid components is in
contact with the film boundaries. Our focus in this paper is
on the partially wet case.

The papers of Das et al. elucidate the roles of wetting and
film thickness in phase separation, although they do not dis-
cuss hydrodynamics or the effect of free-surface variations
on domain formation. Here, we therefore focus on ultrathin
films with a variable free surface, and for simplicity we re-
strict our attention to the case where both fluids experience
the same interaction with the substrate and free surface. The
model we introduce is based on the Navier-Stokes Cahn-
Hilliard equations �10�. With an applied external forcing, the
model highlights the effect of the dynamical back reaction of
concentration gradients on the flow, a useful feature in appli-
cations where control of phase separation is required �11�.

In full generality, the equations we study are
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is the stress tensor, p is the fluid pressure, � is the body force
potential, and � is the constant density. Additionally, � is the
kinematic viscosity, � is the mixture free energy per unit
mass, D is the Cahn-Hilliard diffusion coefficient, and �� is
the thickness of domain boundaries. The concentration
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boundary condition for Eq. �1� is n ·�c=n ·���2c�=0,
where n is a vector normal to the boundary, while the bound-
ary conditions on the velocity and stress tensor are standard
�12�. We nondimensionalize these equations by using the
vertical length scale h0, the horizontal or lateral length scale
	, and the diffusion time 	2 /D. If the parameter 
=h0 /	 is
small, a lubrication approximation is possible �12�. We take
the following dimensionless groups to be of order unity:

Re =

D

�
, C =

��D

h0�0
2 ,

r =

2��

D�
, Cn =


��

h0
,

where Re is the Reynolds number, Cn is the Cahn number
�10� which provides a dimensionless measure of domain wall
thickness, r is a dimensionless measure of the back-reaction
strength, and C−1 is a dimensionless measure of surface ten-
sion determined by the reference-level dimensional surface
tension �0. Using these scalings, we expand the nondimen-
sional version of Eq. �1� in powers of 
, following the
method outlined in �12�, and obtain equations for the free
surface height h�x ,y , t� and concentration c�x ,y , t�,
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Here ��= ��x ,�y� is the gradient operator in the lateral direc-
tions, u is the vertically averaged velocity, � is the dimen-
sionless, spatially varying surface tension, and � is the body
force potential. The first term in the equation for u comes
from the boundary condition on Tij on the free surface �12�.
While the equations do not allow for vertical variations in
concentration, we show in what follows that the model re-
produces the qualitative features observed in thin binary flu-
ids, especially in the case where both binary fluid compo-
nents interact identically with the substrate and free surface
�7�.

For thin films with h0=100–1000 nm �4,5�, the dominant
contribution to the potential is due to van der Waals interac-
tions �12,13�, and following these references we take �
=Ah−3, where A is the dimensionless Hamaker coefficient.
To prevent rupture �12�, we study films where A0, and
take A to be independent of the concentration level, so that
both binary fluid components are attracted equally to the
substrate and free surface boundaries. In this case, Eq. �2�
possesses simple one-dimensional equilibrium solutions, ob-
tained by setting u=���=0. From Fig. 1 we see that the
one-dimensional equilibrium solution of Eq. �2�, with bound-

ary conditions h�±� �=1, c�±� �= ±1, consists of a steplike
profile for the concentration, corresponding to a pair of do-
mains separated by a smooth transition region. Across this
transition region, the height field dips into a valley. While the
valley increases in depth for large backreaction strength r,
the film never ruptures. This result follows from the inequal-
ity h��0��0, since x=0 is a local minimum. Thus, at equi-
librium,
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−1
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In this way, the repulsive van der Waals potential has a regu-
larizing effect on the solutions.

Physically, the formation of the valley arises from the
balance between the van der Waals and back-reaction effects.
From the solution in Fig. 1, the capillary force Fcap=
−rh−1�x�h��xc�2� and the van der Waals force FvdW

= 	A 	�xh
−3 always have opposite signs. The repulsive van der

Waals force acts as a nonlinear diffusion �14� and inhibits
rupture, and therefore Fcap promotes rupture, a result seen in
experiments �4�. The valley in the height field represents a
balance between the smoothening and the rupture-inducing
effects.

As in ordinary Cahn-Hilliard dynamics �2�, the one-
dimensional equilibrium solution hints at the late-time state
in higher dimensions. Thus, we expect the multidimensional
solution to comprise concentration domains with a height
field of peaks and valleys, with valleys occurring at domain
boundaries. Numerical simulations show that this is indeed
the case. Our study of domain size uses an average wave
number �kx ,ky�, obtained from the Fourier transform of the
correlation function �c�x , t�c�x+r , t�� �15�. Using this defini-
tion, we find that the domains grow in time as t1/3, the usual
Lifshitz-Slyozov growth law �9�. Here x= �x ,y� denotes the
lateral coordinates and �¯� denotes the spatial average. The
modified growth exponent due to hydrodynamic effects
�2,16� is not observed, since the diffusive time scale deter-
mines the asymptotic ordering in the derivation of Eq. �2�.
The surface roughness arising from the concentration gradi-
ents is similar to that observed in the one-dimensional case
and has been seen in several experiments �4,18�.

Although the effect of hydrodynamics is not important for
domain growth, the coupling of concentration gradients to
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FIG. 1. �Color online� Equilibrium solutions of Eq. �2� for C
=Cn

2= 	A 	 =1 and r=0.1,1 ,10,50. In �a� the valley deepens with
increasing r although the film never ruptures, while in �b� the front
steepens with increasing r.
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the flow is the origin of the back reaction in our equations.
The resulting interplay of free-surface height and concentra-
tion variations has dramatic effects on the phase separation
when we apply a surface tension gradient across the film.
Physically, this can be realized by differential heating of the
surface �19�, although a surfactant will also induce stresses at
the surface �20�. We set �=�0 sin kx, where �0 is a dimen-
sionless amplitude, k= �2� /L�m=k0m is the spatial scale of
the surface tension variation, and m is an integer. Then the
velocity that drives the system becomes

u =
1

2
h�k�0 cos kx,0� +

1

3
h2���� 1

C
��

2 h +
	A	
h3 �

−
r

h
���h	��c	2�
 .

This velocity field may also be obtained by imposing a shear
stress � at the surface, with �=��� �21�. We carry out simu-
lations with this forcing on a 128�128 grid. The results do
not change upon increasing the resolution. The parameter Cn
is chosen to regularize domain boundaries �17�. The other
parameter values are indicated in the caption to Fig. 2.

This choice of velocity field leads to control of phase
separation in the following manner. For small values of the
backreaction strength, with r→0, the height field quickly
aligns with the surface tension profile as in Fig. 3, since the
strong effect of the van der Waals diffusion destroys the un-
forced part of h�x , t�. At the same time, the concentration
field begins to form domains. At later times, when
kx�t� ,ky�t�k, the domains align with the gradient of the
forcing term. The growth of the domains continues in this
direction and is arrested �or slowed down considerably� in
the direction perpendicular to the forcing. The domains are
stringlike, with kinks occurring along lines where ��x ,y� is
minimized, as evidenced by Figs. 2�a�–2�d�. The time depen-

dence of the average wave number �kx ,ky� is shown in Fig. 4.
It is not clear whether the decay of �kx ,ky� is arrested or
continues slowly, and we do not report the decay rate here.

For moderate values of the back-reaction strength with r
O�1�, the height field again assumes a profile aligned with
the surface tension, while domains of concentration now
align in a direction perpendicular to the forcing gradient.
Domain growth continues in the perpendicular direction and
is arrested in the direction of the driving-force gradient. A
pattern of stringlike domains emerges, with domain bound-
aries forming along lines where both ��x ,y� and h�x ,y , t� are
maximized. Eventually, the domain boundaries align per-
fectly with the surface tension maxima, as evidenced in Figs.
2�e� and 2�h�.

The control of phase separation by surface shear therefore
depends crucially on the back reaction. This result is ampli-
fied by the existence of a no-rupture condition only for the
r=0 case �no back reaction�. This condition relies on the
alignment of the height and surface tension profiles, which is
exact only when the back reaction is zero. Then, at late
times, the system evolves towards equilibrium and is de-
scribed by the steady state �� ·� 1

2h2���+ 1
3h3���C−1��

2 h
+ 	A 	h−3��=0, which by the alignment property reduces to
the one-dimensional equation
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By multiplying both sides of the expression by h, differenti-
ating, and then evaluating the result at x0, a minimum of both
surface tension and height, we obtain the condition

FIG. 2. �Color online� Concentration field for C=1, A=−10.
Across the first row, r=0 and t= �a� 1000; �b� 3750; �c� 7500; �d�
30 000. Across the second row, r=1/4 and t= �e� 1000; �f� 3750; �g�
7500; �h� 30 000. The surface tension gradient is parallel to the
arrow, and �=�0 sin�kx�, �0=20, and k=4k0. In �a�–�d� with r=0,
the domains align along the arrow, while in �e�–�h� with moderate
back-reaction strength, the domains align in a direction perpendicu-
lar to the arrow.
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FIG. 3. �Color online� Height field for r=0 and t=30 000 aligns
with the applied surface tension. The height field at t=30 000 for
r=1/4 is similar.
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FIG. 4. �Color online� Time dependence of kx and ky for �a� r
=0, where the secular behavior of kx and ky has a small drift whose
rate we do not report; �b� r=1/4, where kx→2 and ky→0.
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Since x0 is a minimum of height, h��x0��0, which prevents
h�x0� from being zero. On the other hand, for r and �0 suf-
ficiently large, the alignment of height and surface tension
profiles is not exact, the one-dimensional state is never
reached, and hence the result in Eq. �3� does not apply. In
that case, simulations show that the film ruptures in finite
time.

Given an applied surface tension gradient, we have out-
lined, by numerical simulations and calculations, three pos-
sible outcomes for the phase separation, depending on the
back-reaction strength r. For r�1, the concentration forms
stringlike domains, aligned with the applied force. For r
O�1�, the concentration forms domains aligned perpen-
dicular to the applied force. For r�1, the forcing causes the
film to rupture. Thus, in a real fluid, the interfacial tension or
back reaction must be tuned to achieve the desired outcome.

In conclusion, we have derived a thin-film model of phase
separation based on the Navier-Stokes Cahn-Hilliard equa-
tions, in which the reaction of concentration gradients on the
flow is important. We have used this model to give a quali-

tative picture of phase separation in thin films, in particular
the tendency of concentration gradients to promote rupture,
and to produce peaks and valleys in the free surface that
mirror the underlying domain morphology. In the presence of
a unidirectional sinusoidal variation in surface tension, the
strength of the back reaction determines the direction in
which the domains align. This result could prove useful in
microfabrication applications where control of phase separa-
tion is required �11�.

Because the lubrication model suppresses vertical varia-
tions in the concentration field, we are limited to the case
where the binary fluid components interact identically with
the substrate and free surface. However, the model quite gen-
erally gives an accurate description of surface roughening
arising from van der Waals forces. More detailed models
based on this approach, involving different boundary condi-
tions that better reflect wetting behavior �7,22� and a
concentration-dependent Hamaker coefficient, can capture a
wider range of thin-film behavior.
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